Free Download Random sets and invariants for (type II) continuous tensor product systems of Hilbert spaces By Volkmar Liebscher
2009 | 124 Pages | ISBN: 0821843184 | PDF | 1 MB
In a series of papers Tsirelson constructed from measure types of random sets or (generalised) random processes a new range of examples for continuous tensor product systems of Hilbert spaces introduced by Arveson for classifying E0-semigroups upto cocyle conjugacy. This paper starts from establishing the converse. So the author connects each continuous tensor product system of Hilbert spaces with measure types of distributions of random (closed) sets in 0 1 or R. These measure types are stationary and factorise over disjoint intervals. In a special case of this construction, the corresponding measure type is an invariant of the product system. This shows, completing in a more systematic way the Tsirelson examples, that the classification scheme for product systems into types In, IIn and III is not complete. Moreover, based on a detailed study of this kind of measure types, the author constructs for each stationary factorising measure type a continuous tensor product system of Hilbert spaces such that this measure type arises as the before mentioned invariant
Buy Premium From My Links To Get Resumable Support,Max Speed & Support Me
Links are Interchangeable – Single Extraction
Leave a Reply
You must be logged in to post a comment.